Activity of the DNA minor groove cross-linking agent SG2000 (SJG-136) against canine tumours

BMC Vet Res. 2015 Aug 19:11:215. doi: 10.1186/s12917-015-0534-2.

Abstract

Background: Cancer is the leading cause of death in older dogs and its prevalence is increasing. There is clearly a need to develop more effective anti-cancer drugs in dogs. SG2000 (SJG-136) is a sequence selective DNA minor groove cross-linking agent. Based on its in vitro potency, the spectrum of in vivo and clinical activity against human tumours, and its tolerability in human patients, SG2000 has potential as a novel therapeutic against spontaneously occurring canine malignancies.

Results: In vitro cytotoxicity was assessed using SRB and MTT assays, and in vivo activity was assessed using canine tumour xenografts. DNA interstrand cross-linking (ICL) was determined using a modification of the single cell gel electrophoresis (comet) assay. Effects on cell cycle distribution were assessed by flow cytometry and measurement of γ-H2AX by immunofluorescence and immunohistochemistry. SG2000 had a multi-log differential cytotoxic profile against a panel of 12 canine tumour cell lines representing a range of common tumour types in dogs. In the CMeC-1 melanoma cell line, DNA ICLs increased linearly with dose following a 1 h treatment. Peak ICL was achieved within 1 h and no removal was observed over 48 h. A relationship between DNA ICL formation and cytotoxicity was observed across cell lines. The formation of γ-H2AX foci was slow, becoming evident after 4 h and reaching a peak at 24 h. SG2000 exhibited significant anti-tumour activity against two canine melanoma tumour models in vivo. Anti-tumour activity was observed at 0.15 and 0.3 mg/kg given i.v. either once, or weekly x 3. Dose-dependent DNA ICL was observed in tumours (and to a lower level in peripheral blood mononuclear cells) at 2 h and persisted at 24 h. ICL increased following the second and third doses in a repeated dose schedule. At 24 h, dose dependent γ-H2AX foci were more numerous than at 2 h, and greater in tumours than in peripheral blood mononuclear cells. SG2000-induced H2AX phosphorylation measured by immunohistochemistry showed good correspondence, but less sensitivity, than measurement of foci.

Conclusions: SG2000 displayed potent activity in vitro against canine cancer cell lines as a result of the formation and persistence of DNA ICLs. SG2000 also had significant in vivo antitumour activity against canine melanoma xenografts, and the comet and γ-H2AX foci methods were relevant pharmacodynamic assays. The clinical testing of SG2000 against spontaneous canine cancer is warranted.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antineoplastic Agents / pharmacology*
  • Benzodiazepinones / pharmacology*
  • Cell Line, Tumor
  • Cross-Linking Reagents / pharmacology
  • DNA
  • Dog Diseases / drug therapy*
  • Dogs
  • Dose-Response Relationship, Drug
  • Drug Administration Schedule
  • Drug Screening Assays, Antitumor
  • Female
  • Flow Cytometry
  • Mice
  • Mice, Nude
  • Pyrroles / pharmacology*
  • Xenograft Model Antitumor Assays

Substances

  • 1,1'-((propane-1,3-diyl)dioxy)bis(7-methoxy-2-methylidene-1,2,3,10,11,11a-hexahydro-5H-pyrrolo(2,1-c)(1,4)benzodiazepin-5,11-dione)
  • Antineoplastic Agents
  • Benzodiazepinones
  • Cross-Linking Reagents
  • Pyrroles
  • DNA