A wafer-scale graphene and ferroelectric multilayer for flexible and fast-switched modulation applications

Nanoscale. 2015 Sep 21;7(35):14730-7. doi: 10.1039/c5nr03020j. Epub 2015 Aug 18.

Abstract

Here we report a wafer-scale graphene/P(VDF-TrFE)/graphene multilayer for light-weight, flexible and fast-switched broadband modulation applications. The P(VDF-TrFE) film not only significantly reduces the sheet resistance of graphene throughout heavy doping of ∼0.8 × 10(13) cm(-2) by nonvolatile ferroelectric dipoles, but also acts as an efficient electro-optic (EO) layer. Such multilayered structural integration with remarkable ferroelectric polarization, high transparency (>90%), low sheet resistance (∼302 Ω□(-1)), and excellent mechanic flexibility shows the potential of a flexible modulation application over a broad range of wavelengths. Moreover, the derived device also exhibits strong field-induced EO modulation even under bending and one large Pockels coefficient (∼54.3 pm V(-1)) is obtained. Finally, the graphene and ferroelectric hybrid demonstrates a fast switching time (∼2 μs) and works well below low sheet resistance level over a long time. This work gives insights into the potential of graphene and ferroelectric hybrid structures, enabling future exploration on next-generation high-performance, flexible transparent electronics and photonics.

Publication types

  • Research Support, Non-U.S. Gov't