We investigate the causes for obtaining higher open-circuit voltage in solar cells that use a fullerene with a smaller electron affinity. Using impedance spectroscopy technique, we show that the change of fullerene LUMO energy has very little influence on the kinetic rate of charge transfer across the interface. In terms of the Marcus theory, large reorganization energy values govern the recombination kinetic rate, which is only slightly dependent on the fullerene LUMO energy, and also depends weakly on the energy location of recombining carriers within the broad density of states. Since the recombination rate is very similar in the different devices, we conclude that the larger open-circuit voltage is due to the larger donor HOMO/acceptor LUMO offset.
Keywords: charge carrier recombination; fullerene bisadducts; impedance spectroscopy; organic electronics; photovoltaic devices.