Macrophage migration inhibitory factor (MIF), a proinflammatory cytokine, is an attractive therapeutic target for the treatment of inflammatory diseases. In our previous study, 3-[(biphenyl-4-ylcarbonyl)carbamothioyl]amino benzoic acid (compound 1) was discovered as a potent inhibitor of MIF by docking-based virtual screening and bioassays. Here, a series of analogues of compound 1 derived from similarity search and chemical synthesis were evaluated for their MIF tautomerase activities, and their structure-activity relationships were then analyzed. The most potent inhibitor (compound 5) with an IC50 of 370 nM strongly suppressed lipopolysaccharide (LPS)-induced production of TNF-α and IL-6 in a dose-dependent manner and significantly enhanced the survival rate of mice with LPS-induced endotoxic shock from 0 to 35% at 0.5 mg/kg and to 45% at 1 mg/kg, highlighting the therapeutic potential of the MIF tautomerase inhibition in inflammatory diseases.