The helicase-primase complex is part of the lytic DNA replication machinery of herpesviruses, but up to now, almost nothing is known about its structure. For Epstein-Barr virus it consists in the helicase BBLF4, the primase BSLF1 and the accessory protein BBLF2/3. The accessory protein shows only weak sequence homology within the herpesvirus family but may be related to an inactive B-family polymerase. BSLF1 belongs to the archaeo-eukaryotic primase family, whereas the helicase BBLF4 has been related either to Dda helicases of caudovirales or to Pif1 helicases. We produced the helicase-primase complex in insect cells using a baculovirus coding for all three proteins simultaneously. The soluble monomeric helicase-primase complex containing the three proteins with 1:1:1 stoichiometry showed ATPase activity, which is strongly stimulated in the presence of ssDNA oligomers. Furthermore, we expressed BBLF2/3 as soluble monomeric protein and performed small-angle X-ray scattering experiments which yielded an envelope whose shape is compatible with B-family polymerases.
Keywords: DNA helicase; DNA replication; EBV; Epstein–Barr virus; Gammaherpesvirus; Primase.