Objective: In order to realize the promise of personalized medicine, Translational Bioinformatics (TBI) research will need to continue to address implementation issues across the clinical spectrum. In this review, we aim to evaluate the expanding field of TBI towards clinical applications, and define common themes and current gaps in order to motivate future research.
Methods: Here we present the state-of-the-art of clinical implementation of TBI-based tools and resources. Our thematic analyses of a targeted literature search of recent TBI-related articles ranged across topics in genomics, data management, hypothesis generation, molecular epidemiology, diagnostics, therapeutics and personalized medicine.
Results: Open areas of clinically-relevant TBI research identified in this review include developing data standards and best practices, publicly available resources, integrative systemslevel approaches, user-friendly tools for clinical support, cloud computing solutions, emerging technologies and means to address pressing legal, ethical and social issues.
Conclusions: There is a need for further research bridging the gap from foundational TBI-based theories and methodologies to clinical implementation. We have organized the topic themes presented in this review into four conceptual foci - domain analyses, knowledge engineering, computational architectures and computation methods alongside three stages of knowledge development in order to orient future TBI efforts to accelerate the goals of personalized medicine.
Keywords: Translational bioinformatics; clinical informatics; clinical research; personalized medicine; translational science.