T follicular regulatory cells (TFR) are a suppressive CD4(+) T cell subset that migrates to germinal centers (GC) during Ag presentation by upregulating the chemokine receptor CXCR5. In the GC, TFR control T follicular helper cell (TFH) expansion and modulate the development of high-affinity Ag-specific responses. In this study, we identified and characterized TFR as CXCR5(+)CCR7(-) "follicular" T regulatory cells in lymphoid tissues of healthy rhesus macaques, and we studied their dynamics throughout infection in a well-defined animal model of HIV pathogenesis. TFR were infected by SIVmac251 and had comparable levels of SIV DNA to CXCR5(-)CCR7(+) "T zone" T regulatory cells and TFH. Contrary to the SIV-associated TFH expansion in the chronic phase of infection, we observed an apparent reduction of TFR frequency in cell suspension, as well as a decrease of CD3(+)Foxp3(+) cells in the GC of intact lymph nodes. TFR frequency was inversely associated with the percentage of TFH and, interestingly, with the avidity of the Abs that recognize the SIV gp120 envelope protein. Our findings show changes in the TFH/TFR ratio during chronic infection and suggest possible mechanisms for the unchecked expansion of TFH cells in HIV/SIV infection.
Copyright © 2015 by The American Association of Immunologists, Inc.