There is discrepancy regarding the duration of reperfusion required using 2,3,5-triphenyl-2H-tetrazolium chloride (TTC) staining to assess myocardial infarction in an isolated, perfused heart model. Several investigators prefer long-term reperfusion (120 minutes) to determine myocardial injury, while others have used a shorter duration (30-40 minutes). We investigated whether oxygen surrounding the myocardium during ischemia plays a critical role in the installation of myocardial infarction during reperfusion. Mice hearts were perfused with a Langendorff apparatus using Krebs Henseleit (KH) buffer oxygenated with 95% O2 plus 5% CO2 at 37°C. Hearts were either immersed in KH or suspended in air during 18 minutes of global ischemia in a normothermic, water-jacketed chamber. Hearts then were reperfused for 40, 60, or 90 minutes. We found that hearts immersed in KH had decreased recovery of function and increased myocardial infarct size, reaching a steady-state level after 40 minutes of reperfusion. In contrast, hearts suspended in air approached steady-state after 90 minutes of reperfusion. Thus, mitochondrial reactive oxygen species (ROS) production was much lower in air-maintained hearts than in KH-immersed hearts. To investigate whether an increase in oxygen surrounding the myocardium during ischemia might cause further damage, we bubbled the KH solution with nitrogen (KH+N2) rather than oxygen (KH+O2). With this alteration, recovery of cardiac function was improved and myocardial infarct size and mitochondrial ROS production were reduced compared with hearts immersed in KH+O2. In conclusion, short-term (40 minutes) reperfusion is sufficient to reach steady-state myocardial infarct size when hearts are immersed in physiologic solution during ischemia; however, a longer duration of reperfusion (90 minutes) is required if hearts are suspended in air. Thus, oxygen surrounding the heart during ischemia determines the extent of myocardium injury during reperfusion.
Keywords: Oxygen; heart function; ischemic conservation; myocardial infarct size; reperfusion injury.