Objective: Heterozygosity in 21-hydroxylase deficiency (21OHD) has been associated with hyperandrogenemic symptoms in children and adults. Moreover, the carrier status is mandatory for genetic counseling. We aimed at defining a hormonal parameter for carrier detection by mass spectrometry.
Design: Eleven basal and ACTH-stimulated steroid hormones of heterozygous carriers of CYP21A2 mutations and control individuals were compared.
Method: Hormones were determined in plasma samples by liquid chromatography tandem mass spectrometry (LC-MS/MS) in 58 carriers (35 males, 23 females, age range 6-78 years) and 44 random controls (25 males, 19 females, age range 8-58 years).
Results: Heterozygotes could be identified best applying the 17-hydroxyprogesterone+21-deoxycortisol/cortisol×1000 ((17OHP+21S)/F×1000) equation 30 min after ACTH injection. An optimal cut-off value of 8.4 provided 89% sensitivity and specificity. Considering this data and a published frequency of heterozygotes of 1/50 to 1/61, the positive predictive value (PPV) of this cut-off is 12%. Of note, the negative predictive value (NPV) excluding heterozygosity in a given patient is 99.8%.
Conclusion: Considering only marginal biochemical effects anticipated from heterozygosity, the stimulated ((17OHP+21S)/F×1000) identifies and excludes heterozygotes remarkably well. Nevertheless, LC-MS/MS cannot replace genetic testing, since sensitivity and specificity did not reach 100%. However, due to the considerably high NPV of the optimal cut-off and to a specificity of even 100% applying a cut-off higher than 14.7, hormonal assessment of heterozygosity can be of significant aid in conditions with limited access to genetic testing, as in some health care systems. The ((17OHP+21S)/F×1000) equation can guide diagnostic considerations in the differential diagnosis of hyperandrogenism.
© 2015 European Society of Endocrinology.