The aim of the present study was to isolate human mesenchymal stem cells (MSCs) from palatal connective and periodontal granulation tissues and to comparatively evaluate their properties. MSCs were isolated using the explant culture method. Adherence to plastic, specific antigen makeup, multipotent differentiation potential, functionality, and ultrastructural characteristics were investigated. The frequency of colony-forming unit fibroblasts for palatal-derived mesenchymal stem cells (pMSCs) was significantly higher than that of granulation tissue-derived mesenchymal stem cells (gtMSCs). A significantly higher population doubling time and lower migration potential were recorded for gtMSCs than for pMSCs. Both cell lines were positive for CD105, CD73, CD90, CD44, and CD49f, and negative for CD34, CD45, and HLA-DR, but the level of expression was different. MSCs from both sources were relatively uniform in their ultrastructure. Generally, both cell lines possessed a large, irregular-shaped euchromatic nucleus, and cytoplasm rich in mitochondria, lysosomes, and endoplasmic reticulum. The periphery of the plasma membrane displayed many small filopodia. MSCs from both cell lines were successfully differentiated into osteogenic, adiopogenic, and chondrogenic lineages. Both healthy and diseased tissues may be considered as valuable sources of MSCs for regenerative medicine owing to the high acceptance and fewer complications during harvesting.
Keywords: differentiation; granulation tissue; mesenchymal stem cells; palate; ultrastructure.