Renal injury has a strong relationship to the subsequent development of renal fibrosis. In developing renal fibrosis, tubular epithelial cells in the kidney underwent epithelial-mesenchymal transition (EMT). Matrix metalloproteinase 7 (MMP7) was reported to reduce E-cadherin and induce EMT by up-regulation of β-catenin/lymphoid enhancer-binding factor 1 (LEF1) signaling. In this research, we tried to evaluate the role of resveratrol (RSV) on EMT process in renal injury and fibrosis. Human tubular epithelial cell HK-2 cells were treated with aristolochic acid (AAs) and transforming growth factor-β(TGF-β) to induce EMT with or without the administration of RSV. The inhibitory role of RSV on EMT in renal injury and fibrosis was determined by Western blotting, real-time PCR, and immunofluorescence staining. The EMT repressing role of RSV was also evaluated in vivo by renal ischemia-reperfusion (I/R) injury and unilateral ureteral obstruction (UUO) models. The underlying mechanism was investigated by shRNA interfering MMP7 and sirtuin 1 (SIRT1) expression. The results indicated that RSV reversed human kidney 2 (HK-2) cell EMT, renal I/R injury, and renal fibrosis. MMP7 inhibition was responsible for RSV-induced EMT repression. SIRT1 was up-regulated by RSV inhibited TGF-β pathway on MMP7 via deacetylating Smad4. In conclusion, RSV attenuated renal injury and fibrosis by inhibiting EMT process which was attributed to the fact that the up-regulated SIRT1 by RSV deacetylated Smad4 and inhibited MMP7 expression.
Keywords: Resveratrol; epithelial–mesenchymal; matrix metalloproteinase 7; renal fibrosis; transition.
© 2015 by the Society for Experimental Biology and Medicine.