Objectives: A 1 mg/L susceptibility breakpoint for ceftaroline and staphylococci is universally agreed; EUCAST counts MIC >1 mg/L as resistant whereas CLSI and FDA count 2 mg/L as intermediate and >2 mg/L as resistant. We investigated whether routine diagnostic tests reliably distinguish MICs of 1 versus 2 mg/L.
Methods: Thirty-five UK laboratories collected Staphylococcus aureus isolates and performed tests with 5 μg (as EUCAST) or 30 μg (as CLSI) discs and either confluent growth on Mueller-Hinton agar (as EUCAST and CLSI) or semi-confluent growth on Iso-Sensitest agar (as BSAC). They also ran Etests for MRSA. Reference MICs were determined centrally by CLSI and BSAC agar dilution.
Results: We obtained paired local disc and central MIC results for 1607 S. aureus (33% MRSA). EUCAST's zone breakpoint recognized 56% of isolates found resistant in MIC tests, but the positive predictive value (PPV) for resistance was 11.0%; corresponding proportions by CLSI testing were 28.0% and 13.4%. The BSAC disc method detected 25% of resistant isolates, with a PPV of 18.2%. Essential agreement, ±1 dilution, of local Etests and central agar MICs was >95%, but only 20% of the isolates found non-susceptible by agar dilution were found non-susceptible by Etest and vice versa. Review for isolates with the modal MIC (0.25 mg/L) indicated that the same laboratories reported large or small zones irrespective of disc and method, implying systematic bias.
Conclusions: MRSA with ceftaroline MICs of 1 and 2 mg/L were poorly discriminated by routine methods. Solutions lie in greater standardization, automation or dosages justifying a higher breakpoint.
© The Author 2015. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: [email protected].