Background: Protection of newborns and young infants against RSV disease via maternal immunization mediated by transplacental transfer of antibodies is under evaluation in third-trimester pregnant women with the RSV recombinant F nanoparticle vaccine (RSV F vaccine). Since the hemichorial placental architecture in guinea pigs and humans is similar, the guinea pig model was employed to assess RSV F vaccine immunogenicity in pregnant sows and to compare RSV-specific maternal antibody levels in their pups.
Methods: Thirty (30) presumptive pregnant guinea pigs were immunized on gestational day 25 and 46 with placebo (PBS), 30μg RSV F, or 30μg RSV F+400μg aluminum phosphate. Sera at delivery/birth (sows/pups) and 15 and 30 days post-partum (pups) were analyzed for the presence of anti-F IgG, palivizumab-competitive antibody (PCA) and RSV/A microneutralization (MN).
Results: The rates of pregnancy and stillbirth were similar between controls and vaccinees. The vaccine induced high levels of anti-F IgG, PCA and MN in sows, with the highest levels observed in adjuvanted vaccinees. Placental transfer to pups was proportional to the maternal antibody levels, with concentration effects observed for all immune measures.
Conclusions: The RSV F vaccine was safe and immunogenic in pregnant guinea pigs and supported robust transplacental antibody transfer to their pups. Relative concentration of antibodies in the pups was observed even in the presence of high levels of maternal antibody. Guinea pigs may be an important safety and immunogenicity model for preclinical assessment of candidate vaccines for maternal immunization.
Keywords: Anti-F IgG; Guinea pig; Hemichorial placenta; Maternal immunization; Microneutralization; Palivizumab-competitive antibody; RSV; RSV F nanoparticle vaccine; Transplacental antibody transfer.
Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.