Drug-eluting stents (DESs) have been used to treat coronary artery diseases by placing in the arteries. However, current DESs still suffer from polymer coating defects such as delamination and peeling-off that follows stent deployment. Such coating defects could increase the roughness of DES and might act as a source of late or very late thrombosis and might increase the incident of restenosis. In this regard, we modified the cobalt-chromium (Co-Cr) alloy surface with hydrophilic poly(2-hydroxyethyl methacrylate) (PHEMA) or hydrophobic poly(2-hydroxyethyl methacrylate)-grafted-poly(caprolactone) (PHEMA-g-PCL) brushes. The resulting surfaces were biocompatible and biodegradable, which could act as anchoring layer for the drug-in-polymer matrix coating. The two modifications were characterized by ATR-FTIR, XPS, water contact angle measurements, SEM and AFM. On the control and modified Co-Cr samples, a sirolimus (SRL)-containing poly(D,L-lactide) (PDLLA) were ultrasonically spray-coated, and the drug release was examined for 8weeks under physiological conditions. The results demonstrated that PHEMA as a primer coating improved the coating stability and degradation morphology, and drug release profile for short-term as compared to control Co-Cr, but fails after 7weeks in physiological buffer. On the other hand, the hydrophobic PHEMA-g-PCL brushes not only enhanced the stability and degradation morphology of the PDLLA coating layer, but also sustained SRL release for long-term. At 8-week of release test, the surface morphologies and release profiles of coated PDLLA layers verified the beneficial effect of hydrophobic PCL brushes as well as their thickness on coating stability. Our study concludes that 200nm thickness of PHEMA-g-PCL as interfacial layer affects the stability and degradation morphology of the biodegradable coating intensively to be applied for various biodegradable-based DESs.
Keywords: Biodegradable polymer; Drug-eluting stent; Photo-initiated chemical vapor deposition; Polymer brush; Ring-opening polymerization.
Copyright © 2015 Elsevier Inc. All rights reserved.