Glycosylation and related processes play important roles in cancer development and progression, including metastasis. Several studies have shown that N-glycans have potential diagnostic value as cancer serum biomarkers. We have explored the significance of the abundance of particular serum N-glycan structures as important features of breast tumour biology by studying the serum glycome and tumour transcriptome (mRNA and miRNA) of 104 breast cancer patients. Integration of these types of molecular data allows us to study the relationship between serum glycans and transcripts representing functional pathways, such as metabolic pathways or DNA damage response. We identified tri antennary trigalactosylated trisialylated glycans in serum as being associated with lower levels of tumour transcripts involved in focal adhesion and integrin-mediated cell adhesion. These glycan structures were also linked to poor prognosis in patients with ER negative tumours. High abundance of simple monoantennary glycan structures were associated with increased survival, particularly in the basal-like subgroup. The presence of circulating tumour cells was found to be significantly associated with several serum glycome structures like bi and triantennary, di- and trigalactosylated, di- and trisialylated. The link between tumour miRNA expression levels and N-glycan production is also examined.
Keywords: Breast cancer; Gene expression; Integrated data analysis; Serum N-glycans; mRNA.
Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.