NOS1-derived nitric oxide promotes NF-κB transcriptional activity through inhibition of suppressor of cytokine signaling-1

J Exp Med. 2015 Sep 21;212(10):1725-38. doi: 10.1084/jem.20140654. Epub 2015 Aug 31.

Abstract

The NF-κB pathway is central to the regulation of inflammation. Here, we demonstrate that the low-output nitric oxide (NO) synthase 1 (NOS1 or nNOS) plays a critical role in the inflammatory response by promoting the activity of NF-κB. Specifically, NOS1-derived NO production in macrophages leads to proteolysis of suppressor of cytokine signaling 1 (SOCS1), alleviating its repression of NF-κB transcriptional activity. As a result, NOS1(-/-) mice demonstrate reduced cytokine production, lung injury, and mortality when subjected to two different models of sepsis. Isolated NOS1(-/-) macrophages demonstrate similar defects in proinflammatory transcription on challenge with Gram-negative bacterial LPS. Consistently, we found that activated NOS1(-/-) macrophages contain increased SOCS1 protein and decreased levels of p65 protein compared with wild-type cells. NOS1-dependent S-nitrosation of SOCS1 impairs its binding to p65 and targets SOCS1 for proteolysis. Treatment of NOS1(-/-) cells with exogenous NO rescues both SOCS1 degradation and stabilization of p65 protein. Point mutation analysis demonstrated that both Cys147 and Cys179 on SOCS1 are required for its NO-dependent degradation. These findings demonstrate a fundamental role for NOS1-derived NO in regulating TLR4-mediated inflammatory gene transcription, as well as the intensity and duration of the resulting host immune response.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Cytokines / metabolism
  • Humans
  • Lipopolysaccharides / pharmacology
  • Macrophages / drug effects
  • Macrophages / metabolism
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Mice, Transgenic
  • Molecular Sequence Data
  • NF-kappa B / genetics
  • NF-kappa B / metabolism*
  • Nitric Oxide / metabolism*
  • Nitric Oxide Synthase Type I / genetics
  • Nitric Oxide Synthase Type I / metabolism*
  • Nitric Oxide Synthase Type II / genetics
  • Nitric Oxide Synthase Type II / metabolism
  • Nitric Oxide Synthase Type III / genetics
  • Nitric Oxide Synthase Type III / metabolism
  • Sepsis / genetics
  • Sepsis / mortality
  • Suppressor of Cytokine Signaling 1 Protein
  • Suppressor of Cytokine Signaling Proteins / genetics
  • Suppressor of Cytokine Signaling Proteins / metabolism*
  • Toll-Like Receptor 4 / metabolism

Substances

  • Cytokines
  • Lipopolysaccharides
  • NF-kappa B
  • Socs1 protein, mouse
  • Suppressor of Cytokine Signaling 1 Protein
  • Suppressor of Cytokine Signaling Proteins
  • Tlr4 protein, mouse
  • Toll-Like Receptor 4
  • Nitric Oxide
  • Nitric Oxide Synthase Type I
  • Nitric Oxide Synthase Type II
  • Nitric Oxide Synthase Type III
  • Nos1 protein, mouse
  • Nos2 protein, mouse
  • Nos3 protein, mouse

Associated data

  • GENBANK/NM009896