This article described a novel method by coupling a universal DNA circuit with graphene sheets/polyaniline/AuNPs nanocomposites (GS/PANI/AuNPs) for highly sensitive and specific detection of BCR/ABL fusion gene (bcr/abl) in chronic myeloid leukemia (CML). DNA circuit known as catalyzed hairpin assembly (CHA) is enzyme-free and can be simply operated to achieve exponential amplification, which has been widely employed in biosensing. However, application of CHA has been hindered by the need of specially redesigned sequences for each single-stranded DNA input. Herein, a transducer hairpin (HP) was designed to obtain a universal DNA circuit with favorable signal-to-background ratio. To further improve signal amplification, GS/PANI/AuNPs with excellent conductivity and enlarged effective area were introduced into this DNA circuit. Consequently, by combining the advantages of CHA and GS/PANI/AuNPs, bcr/abl could be detected in a linear range from 10 pM to 20 nM with a detection limit of 1.05 pM. Moreover, this protocol showed excellent specificity, good stability and was successfully applied for the detection of real sample, which demonstrated its great potential in clinical application.
Keywords: BCR/ABL fusion gene; Catalyzed hairpin assembly; Electrochemical DNA biosensor; Transducer hairpin; Universal DNA circuit.
Copyright © 2015 Elsevier B.V. All rights reserved.