Ambipolar solution-processed hybrid perovskite phototransistors

Nat Commun. 2015 Sep 8:6:8238. doi: 10.1038/ncomms9238.

Abstract

Organolead halide perovskites have attracted substantial attention because of their excellent physical properties, which enable them to serve as the active material in emerging hybrid solid-state solar cells. Here we investigate the phototransistors based on hybrid perovskite films and provide direct evidence for their superior carrier transport property with ambipolar characteristics. The field-effect mobilities for triiodide perovskites at room temperature are measured as 0.18 (0.17) cm(2) V(-1) s(-1) for holes (electrons), which increase to 1.24 (1.01) cm(2) V(-1) s(-1) for mixed-halide perovskites. The photoresponsivity of our hybrid perovskite devices reaches 320 A W(-1), which is among the largest values reported for phototransistors. Importantly, the phototransistors exhibit an ultrafast photoresponse speed of less than 10 μs. The solution-based process and excellent device performance strongly underscore hybrid perovskites as promising material candidates for photoelectronic applications.

Publication types

  • Research Support, Non-U.S. Gov't