We present a framework for simulating cross-sectional or longitudinal biomarker data sets from neurodegenerative disease cohorts that reflect the temporal evolution of the disease and population diversity. The simulation system provides a mechanism for evaluating the performance of data-driven models of disease progression, which bring together biomarker measurements from large cross-sectional (or short term longitudinal) cohorts to recover the average population-wide dynamics. We demonstrate the use of the simulation framework in two different ways. First, to evaluate the performance of the Event Based Model (EBM) for recovering biomarker abnormality orderings from cross-sectional datasets. Second, to evaluate the performance of a differential equation model (DEM) for recovering biomarker abnormality trajectories from short-term longitudinal datasets. Results highlight several important considerations when applying data-driven models to sporadic disease datasets as well as key areas for future work. The system reveals several important insights into the behaviour of each model. For example, the EBM is robust to noise on the underlying biomarker trajectory parameters, under-sampling of the underlying disease time course and outliers who follow alternative event sequences. However, the EBM is sensitive to accurate estimation of the distribution of normal and abnormal biomarker measurements. In contrast, we find that the DEM is sensitive to noise on the biomarker trajectory parameters, resulting in an over estimation of the time taken for biomarker trajectories to go from normal to abnormal. This over estimate is approximately twice as long as the actual transition time of the trajectory for the expected noise level in neurodegenerative disease datasets. This simulation framework is equally applicable to a range of other models and longitudinal analysis techniques.
Keywords: Alzheimer's disease; Biomarker evolution; Differential equation model; Event-based model; Simulation system.
Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.