Objective: Resistance of Teff cells to Treg cell-mediated suppression contributes to the breakdown of peripheral tolerance in the inflamed joints of patients with juvenile idiopathic arthritis (JIA). However, unanswered questions are whether this resistant phenotype is self-sustained and whether CD8+ and CD4+ Teff cells share the same mechanism of resistance to suppression. We undertook this study to investigate intrinsic resistance of CD8+ Teff cells to suppression and to determine how this can be targeted therapeutically.
Methods: CD8+ or CD4+ Teff cells were cultured with or without antigen-presenting cells (APCs) in Treg cell-dependent and -independent suppression assays. Synovial fluid (SF)-derived Teff cells were crosscultured with peripheral blood (PB) Treg cells from JIA patients or healthy controls. Tumor necrosis factor (TNF) or interferon-γ (IFNγ) blocking agents were used to restore Teff cell responsiveness to suppression.
Results: Suppression of cell proliferation and cytokine production in CD8+ Teff cells from the SF of JIA patients was severely impaired compared to that in CD8+ Teff cells from the PB of JIA patients, regardless of the presence of APCs and CD4+ Teff cells. Similar to CD4+ Teff cells, impaired suppression of CD8+ Teff cells was shown to be an intrinsic feature of this cell population. While TNF blockade restored both CD8+ and CD4+ Teff cell susceptibility to suppression, autocrine release of IFNγ selectively sustained CD8+ Teff cell resistance, which could be relieved by IFNγ blockade.
Conclusion: Unlike CD4+ Teff cells, resistance of CD8+ Teff cells to suppression at the site of autoimmune inflammation is maintained by autocrine release of IFNγ, and blockade of IFNγ restores CD8+ Teff cell responsiveness to suppression. These findings indicate a potential therapeutic value of blocking IFNγ to restore immune regulation in JIA.
© 2016, American College of Rheumatology.