Numerical simulations of holographic spatiospectral traces of spatiotemporally distorted ultrashort laser pulses

Appl Opt. 2015 Aug 1;54(22):6640-51. doi: 10.1364/AO.54.006640.

Abstract

We simulate traces for a catalog of spatiotemporally complex pulses measured using a single-shot complete spatiotemporal pulse-measurement technique we recently developed, called Spatially and Temporally Resolved Intensity and Phase Evaluation Device: Full Information from a Single Hologram (STRIPED FISH). The only such technique ever developed to our knowledge, STRIPED FISH measures the complete spatiotemporal intensity I(x,y,t) and phase ϕ(x,y,t) of an arbitrary laser pulse using an experimentally recorded trace consisting of multiple digital holograms, one for each frequency present in the pulse. To understand the effects of various spatiotemporal distortions on the STRIPED FISH trace, we numerically investigate STRIPED FISH trace features for a catalog of pulses, including the spatially and temporally transform-limited pulse, temporal and spatial double pulses, spherically focusing and diverging pulses, self-phase modulated and self-focusing pulses, spatiotemporally coupled pulses, and pulses with complex structures. As a practical example, we also analyze an experimentally recorded trace of a focusing pulse with spatial chirp. Overall, we find that, from STRIPED FISH's informative trace, significant spatiotemporal characteristics of the unknown pulse can be immediately recognized from the camera frame. This, coupled with its simple pulse-retrieval algorithm, makes STRIPED FISH an excellent technique for measuring and monitoring ultrafast laser sources.