The sarcoplasmic reticulum (SR) of striated muscles is specialized for releasing Ca(2+) following sarcolemma depolarization in order to activate muscle contraction. To this end, the SR forms a network of longitudinal tubules and cisternae that surrounds the myofibrils and, at the same time, participates to the assembly of the triadic junctional membrane complexes formed by the close apposition of one t-tubule, originated from the sarcolemma, and two SR terminal cisternae. Advancements in understanding the molecular basis of the SR structural organization have identified an interaction between sAnk1, a transmembrane protein located on the longitudinal SR (l-SR) tubules, and obscurin, a myofibrillar protein. The direct interaction between these two proteins results in molecular contacts that have the overall effect to stabilize the l-SR tubules along myofibrils in skeletal muscle fibers. Less known is the structural organization of the sites in the SR that are specialized for Ca(2+) release and are positioned at the junctional SR (j-SR), i.e. the region of the terminal cisternae that faces the t-tubule at triads. At the j-SR, several trans-membrane proteins like triadin, junctin, or intra-luminal SR proteins like calsequestrin, are assembled together with the ryanodine receptor, the SR Ca(2+) release channel, into a macromolecular complex specialized in releasing Ca(2+). At triads, the 12 nm-wide gap between the t-tubule and the j-SR allows the ryanodine receptor on the j-SR to be functionally coupled with the voltage-gated L-type calcium channel on the t-tubule in order to allow the transduction of the voltage-induced signal into Ca(2+) release through the ryanodine receptor channels. The muscle-specific junctophilin isoforms (JPH1 and JPH2) are anchored to the j-SR with a trans-membrane segment present at the C-terminus and are capable to bind the sarcolemma with a series of phospholipid-binding motifs localized at the N-terminus. Accordingly, through this dual interaction, JPH1 and JPH2 are responsible for the assembly of the triadic junctional membrane complexes. Recent data indicate that junctophilins seem also to interact with other proteins of the excitation-contraction machinery, suggesting that they may contribute to hold excitation-contraction coupling proteins to the sites where the j-SR is being organized.
Keywords: Calcium signalling; Excitation–contraction coupling; Membrane contact site; Muscle biology; Sarcoplasmic reticulum.