Simkania negevensis is an obligate intracellular bacterial pathogen that grows in amoeba or human cells within a membrane-bound vacuole forming endoplasmic reticulum (ER) contact sites. The membrane of this Simkania-containing vacuole (SnCV) is a critical host-pathogen interface whose origin and molecular interactions with cellular organelles remain poorly defined. We performed proteomic analysis of purified ER-SnCV-membranes using label free LC-MS(2) to define the pathogen-containing organelle composition. Of the 1,178 proteins of human and 302 proteins of Simkania origin identified by this strategy, 51 host cell proteins were enriched or depleted by infection and 57 proteins were associated with host endosomal transport pathways. Chemical inhibitors that selectively interfere with trafficking at the early endosome-to-trans-Golgi network (TGN) interface (retrograde transport) affected SnCV formation, morphology and lipid transport. Our data demonstrate that Simkania exploits early endosome-to-TGN transport for nutrient acquisition and growth.
© 2015 John Wiley & Sons Ltd.