Mitochondrial Profiling of Acute Myeloid Leukemia in the Assessment of Response to Apoptosis Modulating Drugs

PLoS One. 2015 Sep 16;10(9):e0138377. doi: 10.1371/journal.pone.0138377. eCollection 2015.

Abstract

BH3 profiling measures the propensity of transformed cells to undergo intrinsic apoptosis and is determined by exposing cells to BH3-mimicking peptides. We hypothesized that basal levels of prosurvival BCL-2 family proteins may modulate the predictive power of BH3 profiling and termed it mitochondrial profiling. We investigated the correlation between cell sensitivity to apoptogenic agents and mitochondrial profiling, using a panel of acute myeloid leukemias induced to undergo apoptosis by exposure to cytarabine, the BH3 mimetic ABT-199, the MDM2 inhibitor Nutlin-3a, or the CRM1 inhibitor KPT-330. We found that the apoptogenic efficacies of ABT-199 and cytarabine correlated well with BH3 profiling reflecting BCL2, but not BCL-XL or MCL-1 dependence. Baseline BCL-2 protein expression analysis increased the ability of BH3 profiling to predict resistance mediated by MCL-1. By utilizing engineered cells with overexpression or knockdown of BCL-2 family proteins, Ara-C was found to be independent, while ABT-199 was dependent on BCL-XL. BCL-2 and BCL-XL overexpression mediated resistance to KPT-330 which was not reflected in the BH3 profiling assay, or in baseline BCL-2 protein levels. In conclusion, mitochondrial profiling, the combination of BH3 profiling and prosurvival BCL-2 family protein analysis, represents an improved approach to predict efficacy of diverse agents in AML and may have utility in the design of more effective drug combinations.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antineoplastic Agents / pharmacology*
  • Apoptosis / drug effects*
  • Blotting, Western
  • Gene Expression Profiling*
  • Gene Expression Regulation, Neoplastic / drug effects*
  • Humans
  • Leukemia, Myeloid, Acute / drug therapy
  • Leukemia, Myeloid, Acute / metabolism*
  • Leukemia, Myeloid, Acute / pathology*
  • Mitochondria / drug effects
  • Mitochondria / metabolism*
  • Mitochondria / pathology
  • Myeloid Cell Leukemia Sequence 1 Protein / metabolism
  • Peptide Fragments / metabolism
  • Proto-Oncogene Proteins / metabolism
  • Proto-Oncogene Proteins c-bcl-2 / metabolism
  • Tumor Cells, Cultured

Substances

  • Antineoplastic Agents
  • Bax protein (53-86)
  • MCL1 protein, human
  • Myeloid Cell Leukemia Sequence 1 Protein
  • Peptide Fragments
  • Proto-Oncogene Proteins
  • Proto-Oncogene Proteins c-bcl-2