PAFit: A Statistical Method for Measuring Preferential Attachment in Temporal Complex Networks

PLoS One. 2015 Sep 17;10(9):e0137796. doi: 10.1371/journal.pone.0137796. eCollection 2015.

Abstract

Preferential attachment is a stochastic process that has been proposed to explain certain topological features characteristic of complex networks from diverse domains. The systematic investigation of preferential attachment is an important area of research in network science, not only for the theoretical matter of verifying whether this hypothesized process is operative in real-world networks, but also for the practical insights that follow from knowledge of its functional form. Here we describe a maximum likelihood based estimation method for the measurement of preferential attachment in temporal complex networks. We call the method PAFit, and implement it in an R package of the same name. PAFit constitutes an advance over previous methods primarily because we based it on a nonparametric statistical framework that enables attachment kernel estimation free of any assumptions about its functional form. We show this results in PAFit outperforming the popular methods of Jeong and Newman in Monte Carlo simulations. What is more, we found that the application of PAFit to a publically available Flickr social network dataset yielded clear evidence for a deviation of the attachment kernel from the popularly assumed log-linear form. Independent of our main work, we provide a correction to a consequential error in Newman's original method which had evidently gone unnoticed since its publication over a decade ago.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Computer Simulation / statistics & numerical data*
  • Humans
  • Likelihood Functions
  • Models, Biological*
  • Monte Carlo Method*
  • Stochastic Processes

Grants and funding

This work was supported by grants from Japan Society for the Promotion of Science KAKENHI (26120523 and 24300106 to HS, URL: http://www.jsps.go.jp/english/index.html). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.