Accumulation of apoptosis-resistant fibroblasts is a hallmark of pulmonary fibrosis. We hypothesized that disruption of inhibitor of apoptosis protein (IAP) family proteins would limit lung fibrosis. We first show that transforming growth factor-β1 and bleomycin increase X-linked IAP (XIAP) and cellular IAP (cIAP)-1 and -2 in murine lungs and mesenchymal cells. Functional blockade of XIAP and the cIAPs with AT-406, an orally bioavailable second mitochondria-derived activator of caspases (Smac) mimetic, abrogated bleomycin-induced lung fibrosis when given both prophylactically and therapeutically. To determine whether the reduction in fibrosis was predominantly due to AT-406-mediated inhibition of XIAP, we compared the fibrotic response of XIAP-deficient mice (XIAP(-/y)) with littermate controls and found no difference. We found no alterations in total inflammatory cells of either wild-type mice treated with AT-406 or XIAP(-/y) mice. AT-406 treatment limited CCL12 and IFN-γ production, whereas XIAP(-/y) mice exhibited increased IL-1β expression. Surprisingly, XIAP(-/y) mesenchymal cells had increased resistance to Fas-mediated apoptosis. Functional blockade of cIAPs with AT-406 restored sensitivity to Fas-mediated apoptosis in XIAP(-/y) mesenchymal cells in vitro and increased apoptosis of mesenchymal cells in vivo, indicating that the increased apoptosis resistance in XIAP(-/y) mesenchymal cells was the result of increased cIAP expression. Collectively, these results indicate that: (1) IAPs have a role in the pathogenesis of lung fibrosis; (2) a congenital deficiency of XIAP may be overcome by compensatory mechanisms of other IAPs; and (3) broad functional inhibition of IAPs may be an effective strategy for the treatment of lung fibrosis by promoting mesenchymal cell apoptosis.
Keywords: X-linked inhibitor of apoptosis protein; fibroblast; fibrocyte; mesenchymal; second mitochondria-derived activator of caspases/direct inhibitor of apoptosis protein–binding protein with low pI.