The aim of the study was to evaluate the diagnostic performance of acoustic radiation force impulse (ARFI) induced strain elastography (SE), point shear wave elastography (p-SWE), and their combined use in differentiating thyroid nodules. This retrospective study included 155 thyroid nodules (94 benign and 61 malignant) in 136 patients. Ultrasound, ARFI-induced SE and p-SWE were performed on each nodule. Receiver operating characteristic curve (ROC) analyses were performed to assess the diagnostic efficacy of ARFI-induced SE, p-SWE and their combined use to distinguish benign from malignant thyroid nodules with histological results used as the reference standard. The areas under the ROC for ARFI-induced SE, p-SWE, and their combined use were 0.828, 0.829, and 0.840, respectively (both P > 0.05). The specificity of ARFI-induced SE was higher than that of p-SWE as well as their combined use (both P < 0.05). The combination of the two methods significantly improved the diagnostic sensitivity and NPV compared with either ARFI-induced SE or p-SWE alone (both P < 0.05). For nodules ≤ 10 mm, the combination of the two methods significantly improved the diagnostic sensitivity only. For nodules > 10 mm, there were no significant differences in sensitivity and NPV among the three methods in differentiating thyroid nodules (all P > 0.05). In conclusions, ARFI-induced SE and p-SWE are both valuable tools for detecting malignant thyroid nodules. The combined use of ARFI-induced SE and p-SWE improves the diagnostic sensitivity and NPV significantly whereas ARFI-induced SE alone achieves the highest specificity.
Keywords: Acoustic radiation force impulse induced strain elastography; point shear wave elastography; thyroid nodules.