Quantitative evaluation of radiation-induced lung injury with hyperpolarized xenon magnetic resonance

Magn Reson Med. 2016 Aug;76(2):408-16. doi: 10.1002/mrm.25894. Epub 2015 Sep 24.

Abstract

Purpose: To demonstrate the feasibility of quantitative and comprehensive global evaluation of pulmonary function and microstructural changes in rats with radiation-induced lung injury (RILI) using hyperpolarized xenon MR.

Methods: Dissolved xenon spectra were dynamically acquired using a modified chemical shift saturation recovery pulse sequence in five rats with RILI (bilaterally exposed by 6-MV x-ray with a dose of 14 Gy 3 mo. prior to MR experiments) and five healthy rats. The dissolved xenon signals were quantitatively analyzed, and the pulmonary physiological parameters were extracted with the model of xenon exchange.

Results: The obtained pulmonary physiological parameters and the ratio of (129) Xe signal in red blood cells (RBCs) versus barrier showed a significant difference between the groups. In RILI rats versus controls, the exchange time increased from 44.5 to 112 ms, the pulmonary capillary transit time increased from 0.51 to 1.48 s, and the ratio of (129) Xe spectroscopic signal in RBCs versus barrier increased from 0.294 to 0.484.

Conclusion: Hyperpolarized xenon MR is effective for quantitative and comprehensive global evaluation of pulmonary function and structural changes without the use of radiation. This may open the door for its use in the diagnosis of lung diseases that are related to gas exchange. Magn Reson Med 76:408-416, 2016. © 2015 Wiley Periodicals, Inc.

Keywords: CSSR; RILI; gas exchange time; hyperpolarized xenon; lung physiology; pulmonary function.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Administration, Inhalation
  • Algorithms
  • Animals
  • Contrast Media
  • Feasibility Studies
  • Image Interpretation, Computer-Assisted / methods*
  • Magnetic Resonance Imaging / methods*
  • Radiation Pneumonitis / diagnostic imaging*
  • Radiation Pneumonitis / pathology*
  • Rats
  • Rats, Sprague-Dawley
  • Reproducibility of Results
  • Respiratory Function Tests / methods*
  • Sensitivity and Specificity
  • Xenon Isotopes*

Substances

  • Contrast Media
  • Xenon Isotopes