When conducting high-throughput biological experiments, it is often necessary to develop a protocol that is both inexpensive and robust. Standard approaches are either not cost-effective or arrive at an optimized protocol that is sensitive to experimental variations. We show here a novel approach that directly minimizes the cost of the protocol while ensuring the protocol is robust to experimental variation. Our approach uses a risk-averse conditional value-at-risk criterion in a robust parameter design framework. We demonstrate this approach on a polymerase chain reaction protocol and show that our improved protocol is less expensive than the standard protocol and more robust than a protocol optimized without consideration of experimental variation.
Keywords: Analysis of Designed Experiments; Experimental Design; Quality Control / Process Improvement; Response Surface Methods; Robust Parameter Design.