Injectable hydrogel provides growth-permissive environment for human nucleus pulposus cells

J Biomed Mater Res A. 2016 Feb;104(2):419-26. doi: 10.1002/jbm.a.35580. Epub 2015 Oct 15.

Abstract

Degeneration of intervertebral discs (IVDs) results in an overall alteration of the biomechanics of the spinal column and becomes a major cause of low back pain. In this study, an injectable hydrogel composite is fabricated and characterized as a potential scaffold for the treatment of degenerated IVDs. Crosslinking of type II collagen-hyaluronic acid (HA) hydrogel with 1-ethyl-3(3-dimethyl aminopropyl) carbodiimide (EDC) increases the gel stability against collagenase digestion and reduces water uptake in comparison with non-crosslinked gel. Cell viability assay exhibits the proliferation of human nucleus pulposus (HNP) cells in hydrogels. The cells in non-crosslinked gel and the gel crosslinked with a low concentration of EDC (0.1 mM) show superior cell viability and morphology compared with cells in gels crosslinked with higher concentration of EDC. Quantitative PCR assay demonstrates the gene expression of extracellular matrix (ECM) by cells cultured in the gels. The expression of ECM genes by HNP cells in the gels demonstrated the phenotypic change of the cells. This study suggests that the type II collagen-HA hydrogel and crosslinked hydrogel (0.1 mM EDC) are permissive matrix for the growth of HNP cells and can be potentially applied in NP repair.

Keywords: hyaluronic acid; hydrogel; nucleus pulposus cells; type II collagen.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Survival / drug effects
  • Collagen Type II* / chemistry
  • Collagen Type II* / pharmacology
  • Humans
  • Hyaluronic Acid* / chemistry
  • Hyaluronic Acid* / pharmacology
  • Hydrogels
  • Intervertebral Disc / metabolism*
  • Intervertebral Disc / pathology
  • Intervertebral Disc Degeneration / therapy*

Substances

  • Collagen Type II
  • Hydrogels
  • Hyaluronic Acid