Corticosterone, one of the glucocorticoids, is toxic to neurons and plays an important role in depressive-like behavior and depression. We previously showed that hydrogen sulfide (H2S), a novel physiological mediator, plays an inhibitory role in depression. However, the mechanism underlying H2S-triggered antidepressant-like role is not clearly known. Brain-derived neurotrophic factor (BDNF), a neurotrophic factor, plays a neuroprotective role that is mediated by its high-affinity tropomysin-related kinase B (TrkB) receptor. In this study, to investigate the underlying mechanism of H2S-induced antidepressant-like role, we explored whether H2S could protect neurons against corticosterone-mediated cyctotoxicity and whether this protective role of H2S was involved in the regulation of BDNF-TrkB pathway. Our data demonstrated that sodium hydrosulfide (NaHS), the donor of H2S, could prevent corticosterone-induced cytotoxicity, apoptosis, accumulation of intracellular reactive oxygen species (ROS) and loss of mitochondrial membrane potential (MMP) in PC12 cells. NaHS not only induced the up-regulation of BDNF but also prevented the down-regulation of BDNF by corticosterone. It was also found that blocking BDNF-TrkB pathway by K252a, an inhibitor of TrkB, abolished the protection of H2S against corticosterone-induced cytotoxicity, apoptosis, accumulation of ROS, and loss of MMP. These results suggest that H2S protects against the neurotoxicity of corticosterone by modulation of the BDNF-TrkB pathway.
Keywords: brain-derived neurotrophic factor; corticosterone; hydrogen sulfide; neurotoxicity; tyrosine kinase receptor B.
© The Author 2015. Published by ABBS Editorial Office in association with Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences.