Importance: To our knowledge, few studies have combined an objective measure of vision-related performance (VRP) and subjective measures of vision-related quality of life (VRQoL) with clinically related visual parameters, particularly in a large, prospective, cohort study setting.
Objective: To examine the relationships between clinical visual assessments and both a VRP and 2 self-reported VRQoL measurements.
Design, setting, and participants: Patients (N = 161) with moderate-stage glaucoma recruited from the Glaucoma Service at Wills Eye Hospital, Philadelphia, Pennsylvania, were enrolled from May 2012 to May 2014 in an ongoing prospective, 4-year longitudinal observational study. This report includes cross-sectional results from the baseline visit. Patients received a complete ocular examination, automated visual field (VF) test and Cirrus optical coherence tomographic scan. Contrast sensitivity was measured with the Pelli-Robson and the Spaeth-Richman Contrast Sensitivity (SPARCS) tests. Vision-related performance was assessed by the Compressed Assessment of Ability Related to Vision (CAARV) test. Vision-related QoL was assessed by the National Eye Institute Visual Function Questionnaire 25 (NEI-VFQ-25) and a modified Glaucoma Symptom Scale (MGSS).
Main outcomes and measures: Correlations between clinical measures and CAARV, NEI-VFQ-25, and MGSS scores.
Results: A total of 161 patients were enrolled in the study. The strongest correlation was found between SPARCS score in the better eye and total CAARV score (r = 0.398; 95% CI, 0.235-0.537; P < .001). The CAARV score also correlated with the Pelli-Robson score (r = 0.353; 95% CI, 0.186-0.499; P = .001), VF mean deviation (r = 0.366; 95% CI, 0.200-0.510; P < .001), and VA (r = -0.326, 95% CI = -0.476 to -0.157; P = .003) in the better eye. There were more statistically significant correlations between contrast sensitivity tests and VF mean deviation with VRQoL measurements than with other clinical measures (visual acuity, intraocular pressure, Disc Damage Likelihood Scale, and mean retinal nerve fiber layer thickness). The MGSS scores were lower (worse) in women compared with men (P = .03 for binocular, P = .01 for better eye, and P = .05 for the worse eye). Structural measures (eg, Disc Damage Likelihood Scale, and retinal nerve fiber layer thickness) were generally not informative with respect to VRP or VRQoL.
Conclusions and relevance: Contrast sensitivity tests and VF mean deviation were associated with both objective measures of the ability to act and subjective measurements of VRQoL. The strongest correlation was between SPARCS score (contrast sensitivity) in the better eye and total CAARV score. Therefore, measurement of contrast sensitivity should be considered when evaluating patients' VRQoL. The results of this study were limited by the patient population and apply only within the bounds of the tested cohort.