The state-of-the art in water-soluble macromolecular therapeutics has been reviewed. First the design principles for polymer-drug conjugates are discussed followed by two recent developments in the field: a) The design, synthesis and properties of backbone degradable N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer-drug conjugates. The enhanced intravascular half-life of such conjugates creates a concentration gradient (blood vs. tumor) for an extended time interval resulting in increased solid tumor accumulation by enhanced permeability and retention (EPR) effect with concomitant increase in efficacy. b) Drug-free macromolecular therapeutics is a new paradigm in macromolecular therapeutics. Apoptosis in malignant cell is induced by crosslinking of cell surface non-internalizing receptors. Crosslinking of receptors is mediated by the biorecognition of two nanoconjugates containing high-fidelity complementary motifs (peptides or oligonucleotides). Results for the treatment of B cell lymphomas in animal models and patient cells demonstrate the high translational potential of this approach.
Keywords: Coiled-coil peptides; Degradable polymeric carriers; Drug-free macromolecular therapeutics; HPMA; Oligonucleotides; Self-assembly.
Copyright © 2015 Elsevier B.V. All rights reserved.