Glutamine synthetase and alanine transaminase expression are decreased in livers of aged vs. young beef cows and GS can be upregulated by 17β-estradiol implants

J Anim Sci. 2015 Sep;93(9):4500-9. doi: 10.2527/jas.2015-9294.

Abstract

Aged beef cows (≥ 8 yr of age) produce calves with lower birth and weaning weights. In mammals, aging is associated with reduced hepatic expression of glutamine synthetase (GS) and alanine transaminase (ALT), thus impaired hepatic Gln-Glu cycle function. To determine if the relative protein content of GS, ALT, aspartate transaminase (AST), glutamate transporters (EAAC1, GLT-1), and their regulating protein (GTRAP3-18) differed in biopsied liver tissue of (a) aged vs. young (3 to 4 yr old) nonlactating, nongestating Angus cows (Exp. 1 and 2) and (b) aged mixed-breed cows with and without COMPUDOSE (17β-estradiol) ear implants (Exp. 3), Western blot analyses were performed. In Exp. 1, 12 young (3.62 ± 0.01 yr) and 13 aged (10.08 ± 0.42 yr) cows grazed the same mixed forage for 42 d (August-October). In Exp. 2, 12 young (3.36 ± 0.01 yr) and 12 aged (10.38 ± 0.47 yr) cows were individually fed (1.03% of BW) a corn-silage-based diet to maintain BW for 20 d. For both Exp. 1 and 2, the effect of cow age was assessed by ANOVA using the MIXED procedure of SAS. Cow BW did not change ( ≥ 0.17). Hepatic ALT (78% and 61%) and GS (52% and 71%) protein content (Exp. 1 and 2, respectively) was decreased ( ≤ 0.01), whereas GTRAP3-18 (an inhibitor of EAAC1 activity) increased ( ≤ 0.01; 170% and 136%) and AST, GLT-1, and EAAC1 contents did not differ ( ≥ 0.17) in aged vs. young cows. In Exp. 2, free concentrations (nmol/g) of Glu, Ala, Gln, Arg, and Orn in liver homogenates were determined. Aged cows tended to have less ( = 0.10) free Gln (15.0%) than young cows, whereas other AA concentrations did not differ ( 0.26). In Exp. 3, 14 aged (> 10 yr) cows were randomly allotted ( = 7) to sham or COMPUDOSE (25.7 mg of 17β-estradiol) implant treatment (TRT), and had ad libitum access to alfalfa hay for 28 d. Blood and liver biopsies were collected 14 and 28 d after implant treatment. Treatment, time after implant (DAY), and TRT × DAY effects were assessed by ANOVA using the MIXED procedure of SAS. Cow BW was not affected ( ≥ 0.96). Implant increased ( ≤ 0.02) total plasma estradiol by 220% (5.07 vs. 1.58 pg/mL) and GS protein by 300%, whereas the relative content of other proteins was not altered ( ≥ 0.16). We conclude that hepatic expression of ALT and GS are reduced in aged vs. young cows, and administration of 17β-estradiol to aged cows increases plasma estradiol and hepatic GS, but not that of other proteins that support hepatic Glu metabolism.

Publication types

  • Randomized Controlled Trial
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aging*
  • Alanine Transaminase / genetics
  • Alanine Transaminase / metabolism*
  • Animal Feed / analysis
  • Animal Nutritional Physiological Phenomena
  • Animals
  • Cattle / physiology*
  • Diet / veterinary
  • Digestion / physiology
  • Drug Implants
  • Estradiol / administration & dosage
  • Estradiol / pharmacology*
  • Female
  • Glutamate-Ammonia Ligase / genetics
  • Glutamate-Ammonia Ligase / metabolism*
  • Liver / enzymology*
  • Zea mays

Substances

  • Drug Implants
  • Estradiol
  • Alanine Transaminase
  • Glutamate-Ammonia Ligase