Profiling the Succession of Bacterial Communities throughout the Life Stages of a Higher Termite Nasutitermes arborum (Termitidae, Nasutitermitinae) Using 16S rRNA Gene Pyrosequencing

PLoS One. 2015 Oct 7;10(10):e0140014. doi: 10.1371/journal.pone.0140014. eCollection 2015.

Abstract

Previous surveys of the gut microbiota of termites have been limited to the worker caste. Termite gut microbiota has been well documented over the last decades and consists mainly of lineages specific to the gut microbiome which are maintained across generations. Despite this intimate relationship, little is known of how symbionts are transmitted to each generation of the host, especially in higher termites where proctodeal feeding has never been reported. The bacterial succession across life stages of the wood-feeding higher termite Nasutitermes arborum was characterized by 16S rRNA gene deep sequencing. The microbial community in the eggs, mainly affiliated to Proteobacteria and Actinobacteria, was markedly different from the communities in the following developmental stages. In the first instar and last instar larvae and worker caste termites, Proteobacteria and Actinobacteria were less abundant than Firmicutes, Bacteroidetes, Spirochaetes, Fibrobacteres and the candidate phylum TG3 from the last instar larvae. Most of the representatives of these phyla (except Firmicutes) were identified as termite-gut specific lineages, although their relative abundances differed. The most salient difference between last instar larvae and worker caste termites was the very high proportion of Spirochaetes, most of which were affiliated to the Treponema Ic, Ia and If subclusters, in workers. The results suggest that termite symbionts are not transmitted from mother to offspring but become established by a gradual process allowing the offspring to have access to the bulk of the microbiota prior to the emergence of workers, and, therefore, presumably through social exchanges with nursing workers.

MeSH terms

  • Actinobacteria / genetics
  • Actinobacteria / isolation & purification
  • Animals
  • Bacteria / classification
  • Bacteria / genetics*
  • Bacteria / isolation & purification
  • DNA, Bacterial / analysis
  • DNA, Bacterial / isolation & purification
  • Gastrointestinal Tract / microbiology*
  • High-Throughput Nucleotide Sequencing
  • Isoptera / growth & development
  • Isoptera / microbiology*
  • Larva / microbiology
  • Life Cycle Stages
  • Phylogeny
  • Proteobacteria / genetics
  • Proteobacteria / isolation & purification
  • RNA, Ribosomal, 16S / chemistry*
  • RNA, Ribosomal, 16S / genetics
  • Sequence Analysis, DNA*
  • Symbiosis

Substances

  • DNA, Bacterial
  • RNA, Ribosomal, 16S

Grants and funding

The authors have no support or funding to report.