The impact of precursors such as creatine, creatinine, and glucose on the formation of mutagenic/carcinogenic heterocyclic amines (HAs) were studied in patties of 9 different animal species equally heat treated with a double-plate contact grill. All grilled patties of the various species (veal, beef, pork, lamb, horse, venison, turkey, chicken, ostrich) contained several HAs such as MeIQx (2-amino-3,8-dimethylimidazo[4,5-f] quinoxaline; 0.5-1.4 ng/g), 4,8-DiMeIQx (2-amino-3,4,8-trimethylimidazo[4,5-f] quinoxaline, 0 to 1.3 ng/g), PhIP (2-amino-1-methyl-6-phenylimidazo[4,5-b] pyridine, 1.2 to 10.5 ng/g), harman (1-methyl-9H-pyrido[3,4-b] indole; 0.5 to 3.2 ng/g), and/or norharman (9H-pyrido[3,4-b]indole 0.5 to 1.9 ng/g). Residual glycogen (glucose) content varied greatly from 0.07 to 1.46 wt% on a dry matter (DM) basis. Total creatin(in)e content in raw meat (1.36 to 2.0 wt% DM) hardly differed between species, except in turkey and ostrich (1.1 wt% DM). Chicken contained, compared to all other species, very low concentrations of glucose (0.07 wt% DM) and the highest levels of nonprotein nitrogen compounds. The free amino acids lysine (r = 0.77, P < 0.001), tyrosine, phenylalanine, proline, isoleucine, and aspartic acid (r = 0.47-0.56, P < 0.05) showed significant correlation to PhIP in chicken. Also a linear correlation was found to exist between PhIP (r = 0.87, P < 0.001) and MeIQx (r = 0.35, P < 0.01), and the molar ratio of creatin(in)e to glucose, respectively. Harman as co-mutagens was linearly correlated to the concentration of glucose (r = 0.65, P < 0.001). By contrast, norharman was not significant correlated to glucose levels.
Keywords: animal species; creatine; creatinine; glucose; heterocyclic amines; patties.
© 2015 Institute of Food Technologists®