Inhibition of IGF1-R overcomes IGFBP7-induced chemotherapy resistance in T-ALL

BMC Cancer. 2015 Oct 8:15:663. doi: 10.1186/s12885-015-1677-z.

Abstract

Background: T-cell acute lymphoblastic leukemia (T-ALL) is a genetically heterogeneous disease with the need for treatment optimization. Previously, high expression of Insulin-like growth factor binding protein 7 (IGFBP7), a member of the IGF system, was identified as negative prognostic factor in adult T-ALL patients. Since aberrant IGFBP7 expression was observed in a variety of neoplasia and was relevant for prognosis in T-ALL, we investigated the functional role of IGFBP7 in Jurkat and Molt-4 cells as in vitro models for T-ALL.

Methods: Jurkat and Molt-4 cells were stably transfected with an IGFBP7 over-expression vector or the empty vector as control. Proliferation of the cells was assessed by WST-1 assays and cell cycle status was measured by flow-cytometry after BrDU/7-AAD staining. The effect of IGFBP7 over-expression on sensitivity to cytostatic drugs was determined in AnnexinV/7-AAD assays. IGF1-R protein expression was measured by Western Blot and flow-cytometric analysis. IGF1-R associated gene expression profiles were generated from microarray gene expression data of 86 T-ALL patients from the Microarrays Innovations in Leukemia (MILE) multicenter study.

Results: IGFBP7-transfected Jurkat cells proliferated less, leading to a longer survival in a nutrient-limited environment. Both IGFBP7-transfected Jurkat and Molt-4 cells showed an arrest in the G0/G1 cell cycle phase. Furthermore, Jurkat IGFBP7-transfected cells were resistant to vincristine and asparaginase treatment. Surface expression and whole protein measurement of IGF1-R protein expression showed a reduced abundance of the receptor after IGFBP7 transfection in Jurkat cells. Interestingly, combination of the IGF1-R inhibitor NPV-AEW541 restored sensitivity to vincristine in IGFBP7-transfected cells. Additionally, IGF1-R associated GEP revealed an up-regulation of important drivers of T-ALL pathogenesis and regulators of chemo-resistance and apoptosis such as NOTCH1, BCL-2, PRKCI, and TP53.

Conclusion: This study revealed a proliferation inhibiting effect of IGFBP7 by G0/G1 arrest and a drug resistance-inducing effect of IGFBP7 against vincristine and asparaginase in T-ALL. These results provide a model for the previously observed association between high IGFBP7 expression and chemotherapy failure in T-ALL patients. Since the resistance against vincristine was abolished by IGF1-R inhibition, IGFBP7 could serve as biomarker for patients who may benefit from therapies including IGF1-R inhibitors in combination with chemotherapy.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antineoplastic Agents / pharmacology*
  • Cell Cycle Checkpoints / drug effects
  • Cell Cycle Checkpoints / genetics
  • Cell Line, Tumor
  • Cell Proliferation
  • Drug Resistance, Neoplasm / genetics*
  • Gene Expression
  • Gene Expression Profiling
  • Humans
  • Insulin-Like Growth Factor Binding Proteins / genetics*
  • Jurkat Cells
  • Precursor T-Cell Lymphoblastic Leukemia-Lymphoma / genetics*
  • Precursor T-Cell Lymphoblastic Leukemia-Lymphoma / metabolism*
  • Receptor, IGF Type 1
  • Receptors, Somatomedin / antagonists & inhibitors*
  • Receptors, Somatomedin / metabolism*
  • Transcriptome

Substances

  • Antineoplastic Agents
  • IGF1R protein, human
  • Insulin-Like Growth Factor Binding Proteins
  • Receptors, Somatomedin
  • insulin-like growth factor binding protein-related protein 1
  • Receptor, IGF Type 1