The photocatalytic activity and photostability of CdS quantum dot (QD) can be remarkably enhanced by hybridization with Rh-substituted layered titanate nanosheet even at very low Rh substitution rate (<1%). Mesoporous CdS-Ti(5.2-x)/6 Rhx/2O2 nanohybrids are synthesized by a self-assembly of exfoliated Ti(5.2-x)/6 Rhx/2O2 nanosheets with CdS QDs. The partial substitution of Rh(3+)/Rh(4+) ions for Ti(4+) ions in layered titanate is quite effective in enhancing an electronic coupling between hybridized CdS and titanate components via the formation of interband Rh 4d states. A crucial role of Rh substituent ion in the internal electron transfer is obviously evidenced from in situ X-ray absorption spectroscopy showing the elongation of (RhO) bond under visible light irradiation. This is the first spectroscopic evidence for the important role of substituent ion in the photoinduced electron transfer of hybrid-type photocatalyst. The CdS-Ti(5.2-x)/6 Rhx/2O2 nanohybrids show much higher photocatalytic activity for H2 production and better photostability than do CdS and unsubstituted CdS-TiO2 nanohybrid. This result is ascribable to the enhancement of visible light absorptivity, the depression of electron-hole recombination, and the enhanced hole curing of CdS upon Rh substitution. The present study underscores that the hybridization with composition-controlled inorganic nanosheet provides a novel efficient methodology to optimize the photo-related functionalities of semiconductor nanocrystal.
Keywords: cation substitution; electronic coupling; hybrid materials; metal oxide nanosheets; photocatalysis, electron transfer.
© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.