Objective: The aberrant expression of microRNAs has been demonstrated to play a crucial role in the initiation and progression of gastric cancer (GC). We here aimed to investigate the mechanism of microRNAs in the regulation of GC pathogenesis.
Methods: Transwell chambers (8-μM pore size; Costar) were used in the in vitro migration and in vision assay. Dual luciferase reporter gene construct and dual luciferase reporter assay to identify the target of miR-126. CADM1 expression was evaluated by immunohistochemical staining. The clinical manifestations, treatments and survival were collected for statistical analysis.
Results: Inhibition of miR-126 effectively reduced migration and invasion of gastric cancer cell lines. Bioinformatics and luciferase reporter assay revealed that miR-126 specifically targeted the 3'UTR of cell adhesion molecule 1 (CADM1) and regulated its expression. Down-regulation of CADM1 enhanced migration and invasion of GC cell lines. Furthermore, in tumor tissues obtained from gastric cancer patients, the expression of miR-126 was negatively correlated with CADM1 and the high expression of miR-126 combined with low expression of CADM1 might serve as a risk factor for stage1 gastric cancer patients.
Conclusions: Our study showed that miR-126, by down-regulation CADM1, enhances migration and invasion in GC cells.
Keywords: Gastric cancer (GC); cell adhesion molecule 1 (CADM1); invasion; microRNA-126.