A simple, rapid and sensitive colorimetric reverse-transcription loop-mediated isothermal amplification (RT-LAMP) was developed for rapid detection of Middle East respiratory syndrome coronavirus (MERS-CoV). The method employed six primers that recognized sequences of a nucleocapsid gene for amplification of nucleic acids under isothermal conditions at 63 degrees C for 60 min. Products were detected through a LA-320c Loopamp Turbidimeter (real-time RT-LAMP) or visual inspection of color change by pre-addition of Hydroxynaphthol Blue dye (visual RT-LAMP). Specificity of RT-LAMP was validated by detection of several human coronaviruses and common respiratory viruses. MERS-CoV real-time RT-LAMP had a linear correlation (R2) of 0.995 at 10(3)-10(6) copies. The limit of detection of real-time RT-LAMP, visual RT-LAMP and quantitative real-time PCR was 500, 1000 and 100 copies/reaction, respectively. The established RT-LAMP assay was demonstrated to be a rapid screening tool for MERS-CoV infection, and could be suitable in resource-limited clinical sites and for field studies.