Aim: Rhythmic gymnasts are often believed to be a population at risk of malnutrition because of their tendency to keep a low weight and a lean appearance for better athletic performance, and because they start intensive training at a very young age. The purpose of this study was to evaluate in adolescent elite gymnasts the effects of physical activity on body composition and cardiac morphology and function.
Methods: Sixteen national level rhythmic gymnasts and 16 control adolescent female underwent anthropometric measurements, bioelectric impedance and echocardiography to assess body composition and cardiac morphology and function.
Results: As compared to controls, gymnasts had lower body mass index (16.9±1.1 vs. 18.7±1.0, P<0.001), fatty mass (14.2±4.5 vs. 15.8±2.9 %, P<0.05) and greater fat-free mass (84.0±4.7 vs. 80.5±5.0 %, P<0.05), left ventricular end-diastolic dimension (4.7±0.4 vs. 4.4±0.3 cm) and left ventricular mass, as absolute (132.8±21.2 vs. 112.5±22.8 g, P<0.01) and indexed (44.5±9.3 vs. 36.1±8.2 g/m2.7, P<0.01). Left ventricular mass was directly related to fat-free mass as absolute (r=0.37, P<0.05) and indexed (r=0.43, P<0.02).
Conclusion: Body composition analysis showed a lower percentage of body fat in the gymnasts, together with a higher percentage of fat-free mass. Echocardiographic findings indicate that elite rhythmic gymnastics present left ventricular remodeling as training-induced cardiac adaptation. Intensive training, dietary attitude and evident leanness of rhythmic gymnasts are not associated with cardiac abnormalities, as it is the case of pathological leanness.