In the present work, we characterize binary lipid mixtures consisting of a three-chain amino-functionalized cationic lipid (DiTT4) with different phospholipids, namely, 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine (DMPE), or 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC). The mixing behavior was investigated by differential scanning calorimetry (DSC). Additionally, aqueous dispersions of the binary mixtures were characterized by means of dynamic light scattering (DLS), laser Doppler electrophoresis, and transmission electron microscopy (TEM) to get further information about particle size, charge, and shape. The complex formation between different binary lipid mixtures and plasmid DNA (pDNA) was investigated by zeta-(ζ)-potential (laser Doppler electrophoresis) and DLS measurements, and the lipid/DNA complexes (lipoplexes) were screened for efficient DNA transfer (transfection) in cell culture. Finally, efficient lipid compositions were investigated with respect to serum stability. This work provides a detailed characterization of the cationic lipid mixtures as foundation for further research. Efficient gene transfer in the presence of serum was demonstrated for selected lipoplexes showing their capability to be used as high-potency gene delivery vehicles.