Increased nurse-to-patient ratios are associated negatively with increased costs and positively with improved patient care and reduced nurse burnout rates. Thus, it is critical from a cost, patient safety, and nurse satisfaction perspective that nurses be utilized efficiently and effectively. To address this, we propose a stochastic programming formulation for nurse staffing that accounts for variability in the patient census and nurse absenteeism, day-to-day correlations among the patient census levels, and costs associated with three different classes of nursing personnel: unit, pool, and temporary nurses. The decisions to be made include: how many unit nurses to employ, how large a pool of cross-trained nurses to maintain, how to allocate the pool nurses on a daily basis, and how many temporary nurses to utilize daily. A genetic algorithm is developed to solve the resulting model. Preliminary results using data from a large university hospital suggest that the proposed model can save a four-unit pool hundreds of thousands of dollars annually as opposed to the crude heuristics the hospital currently employs.
Keywords: Absenteeism; Genetic Algorithm; Nurse staffing; Stochastic.