In this paper, we report 4 different saturable absorbers based on 4 transition metal dichalcogenides (MoS(2), MoSe(2), WS(2), WSe(2)) and utilize them to Q-switch a ring-cavity fiber laser with identical cavity configuration. It is found that MoSe(2) exhibits highest modulation depth with similar preparation process among four saturable absorbers. Q-switching operation performance is compared from the aspects of RF spectrum, optical spectrum, repetition rate and pulse duration. WS(2) Q-switched fiber laser generates the most stable pulse trains compared to other 3 fiber lasers. These results demonstrate the feasibility of TMDs to Q-switch fiber laser effectively and provide a meaningful reference for further research in nonlinear fiber optics with these TMDs materials.