The thermally induced cyclodehydrogenation reaction of 6,6'-bipentacene precursors on Au(111) yields peripentacene stabilized by surface interactions with the underlying metallic substrate. STM and atomic-resolution non-contact AFM imaging reveal rectangular flakes of nanographene featuring parallel pairs of zig-zag and armchair edges resulting from the lateral fusion of two pentacene subunits. The synthesis of a novel molecular precursor 6,6'-bipentacene, itself a synthetic target of interest for optical and electronic applications, is also reported. The scalable synthetic strategy promises to afford access to a structurally diverse class of extended periacenes and related polycyclic aromatic hydrocarbons as advanced materials for electronic, spintronic, optical, and magnetic devices.
Keywords: arenes; graphene; non-contact AFM; periacene; surface chemistry.
© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.