Coxiella burnetii, the etiologic bacterium of Q fever zoonosis, is still difficult to control. Ruminants are often carriers and involved in human epidemics. MLVA is a promising genotyping method for molecular epidemiology. Different techniques are used to resolve the MLVA band profiles such as electrophoresis on agarose gels, capillary electrophoresis or using the microfluidic Lab-on-Chip system. In this study, system based on microfluidics electrophoresis with Lab-on-Chip technology was assessed and applied on DNA field samples to investigate the genotypic diversity of C. burnetii strains circulating in France. The Lab-on-Chip technology was first compared to agarose gel electrophoresis. Subsequently, the set-up Lab-on-Chip technology was applied on 97 samples collected from ruminants in France using the 17 markers previously described. A discordance rate of 27% was observed between Lab-on-Chip and agarose gel electrophoresis. These discrepancies were checked and resolved by sequencing. The cluster analysis revealed classification based on host species and/or geographic origin criteria. Moreover, the circulation of different genotypic strains within the same farm was also observed. In this study, MLVA with Lab-on-Chip technology was shown to be more accurate, reproducible, user friendly and safer than gel electrophoresis. It also provides an extended data set from French ruminant C. burnetii circulating strains useful for epidemiological investigations. Finally, it raises some questions regarding the standardization and harmonization of C. burnetii MLVA genotyping.
Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.