Segmental duplications and other highly repetitive regions of genomes contribute significantly to cells' regulatory programs. Advancements in next generation sequencing enabled genome-wide profiling of protein-DNA interactions by chromatin immunoprecipitation followed by high throughput sequencing (ChIP-seq). However, interactions in highly repetitive regions of genomes have proven difficult to map since short reads of 50-100 base pairs (bps) from these regions map to multiple locations in reference genomes. Standard analytical methods discard such multi-mapping reads and the few that can accommodate them are prone to large false positive and negative rates. We developed Perm-seq, a prior-enhanced read allocation method for ChIP-seq experiments, that can allocate multi-mapping reads in highly repetitive regions of the genomes with high accuracy. We comprehensively evaluated Perm-seq, and found that our prior-enhanced approach significantly improves multi-read allocation accuracy over approaches that do not utilize additional data types. The statistical formalism underlying our approach facilitates supervising of multi-read allocation with a variety of data sources including histone ChIP-seq. We applied Perm-seq to 64 ENCODE ChIP-seq datasets from GM12878 and K562 cells and identified many novel protein-DNA interactions in segmental duplication regions. Our analysis reveals that although the protein-DNA interactions sites are evolutionarily less conserved in repetitive regions, they share the overall sequence characteristics of the protein-DNA interactions in non-repetitive regions.