Cooperative cluster metalation and ligand migration were performed on a Zr-MOF, leading to the isolation of unique bimetallic MOFs based on decanuclear Zr6M4 (M = Ni, Co) clusters. The M(2+) reacts with the μ3-OH and terminal H2O ligands on an 8-connected [Zr6O4(OH)8(H2O)4] cluster to form a bimetallic [Zr6M4O8(OH)8(H2O)8] cluster. Along with the metalation of Zr6 cluster, ligand migration is observed in which a Zr-carboxylate bond dissociates to form a M-carboxylate bond. Single-crystal to single-crystal transformation is realized so that snapshots for cooperative cluster metalation and ligand migration processes are captured by successive single-crystal X-ray structures. In(3+) was metalated into the same Zr-MOF which showed excellent catalytic activity in the acetaldehyde cyclotrimerization reaction. This work not only provides a powerful tool to functionalize Zr-MOFs with other metals, but also structurally elucidates the formation mechanism of the resulting heterometallic MOFs.
Keywords: cluster metalation; heterometallic MOFs; ligand migration; metal-organic frameworks; zirconium.
© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.