We explore the dynamics of blue emission from dodecylamine and ammonia functionalized silicon nanocrystals (Si NCs) with average diameters of ∼3 and ∼6 nm using time-resolved photoluminescence (TRPL) spectroscopy. The Si NCs exhibit nanosecond PL decay dynamics that is independent of NC size and uniform across the emission spectrum. The TRPL measurements reveal complete quenching of core state emission by a charge transfer state that is responsible for the blue PL with a radiative recombination rate of ∼5 × 10(7) s(-1). A detailed picture of the charge transfer state emission dynamics in these functionalized Si NCs is proposed.