MicroRNA-92b promotes tumor growth and activation of NF-κB signaling via regulation of NLK in oral squamous cell carcinoma

Oncol Rep. 2015 Dec;34(6):2961-8. doi: 10.3892/or.2015.4323.

Abstract

miR-92b has been reported to be dysregulated in many types of human cancers. However, the role of miR-92b in oral squamous cell carcinoma (OSCC) is unknown. The aim of the present study was to investigate the function and mechanism of miR-92b in human OSCC. Using quantitative reverse‑transcription PCR (qRT-PCR), we found that the miR-92b level in primary tumors (n=85) was significantly elevated compared with that in the adjacent normal tissues (p<0.001). A high level of miR-92b was significantly associated with a large tumor size (p=0.005), advanced tumor stage (p<0.001) and poorer prognosis (p=0.04). Functionally, miR-92b was shown to not only promote the proliferation of OSCC cells in MTT and colony formation and xenograft assays, but also to inhibit cell apoptosis in a flow cytometric assay. In western blotting and luciferase assay, NLK was identified as a direct and functional target of miR-92b. We also found that NLK was involved in miR-92b-induced cell proliferation, and its protein level was obviously downregulated in the miR-92b-overexpressing xenograft tumors. Finally, luciferase reporter assay and fluorescent immunostaining revealed that miR-92b activated the NF-κB signaling pathway, which may be responsible for the effects of miR-92b on cell proliferation. Taken together, our results indicate that miR-92b upregulation accelerates tumor growth and present a novel mechanism of miRNA‑mediated NF-κB activation in OSCC.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • 3' Untranslated Regions
  • Animals
  • Apoptosis / genetics
  • Carcinoma, Squamous Cell / genetics*
  • Carcinoma, Squamous Cell / pathology
  • Cell Line, Tumor
  • Cell Proliferation / genetics
  • Gene Expression Regulation, Neoplastic
  • Humans
  • Intracellular Signaling Peptides and Proteins / biosynthesis*
  • Intracellular Signaling Peptides and Proteins / genetics
  • Mice
  • MicroRNAs / biosynthesis
  • MicroRNAs / genetics*
  • Mouth Neoplasms / genetics*
  • Mouth Neoplasms / pathology
  • NF-kappa B / genetics
  • Protein Serine-Threonine Kinases / biosynthesis*
  • Protein Serine-Threonine Kinases / genetics
  • RNA, Messenger / biosynthesis
  • Signal Transduction
  • Xenograft Model Antitumor Assays

Substances

  • 3' Untranslated Regions
  • Intracellular Signaling Peptides and Proteins
  • MIRN92 microRNA, human
  • MicroRNAs
  • NF-kappa B
  • RNA, Messenger
  • NLK protein, human
  • Protein Serine-Threonine Kinases